Elliptic modularity for octahedral Galois representations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modularity lifting theorems for ordinary Galois representations

We generalize the results of [CHT08] and [Tay08] by proving modularity lifting theorems for ordinary l-adic Galois representations of any dimension of a CM or totally real number field F . The main theorems are obtained by establishing an R = T theorem over a Hida family. A key part of the proof is to construct appropriate ordinary lifting rings at the primes dividing l and to determine their i...

متن کامل

Galois Representations and Elliptic Curves

An elliptic curve over a field K is a projective nonsingular genus 1 curve E over K along with a chosen K-rational point O of E, which automatically becomes an algebraic group with identity O. If K has characteristic 0, the n-torsion of E, denoted E[n], is isomorphic to (Z/nZ) over K. The absolute Galois group GK acts on these points as a group automorphism, hence it acts on the inverse limit l...

متن کامل

Octahedral Galois Representations Arising from Q-curves of Degree 2

Generically, one can attach to a Q-curve C octahedral representations ρ : Gal(Q/Q) −→ GL 2 (F 3) coming from the Galois action on the 3-torsion of those abelian varieties of GL 2-type whose building block is C. When C is defined over a quadratic field and has an isogeny of degree 2 to its Galois conjugate, there exist such representations ρ having image into GL 2 (F 9). Going the other way, we ...

متن کامل

Modularity Lifting Theorems for Galois Representations of Unitary Type

We prove modularity lifting theorems for l-adic Galois representations of any dimension satisfying a unitary type condition and a Fontaine-Laffaille type condition at l. This extends the results of Clozel, Harris and Taylor ([CHT08]), and the subsequent work by Taylor ([Tay08]). The proof uses the Taylor-Wiles method, as improved by Diamond, Fujiwara, Kisin and Taylor, applied to Hecke algebras...

متن کامل

Galois representations which are not minimally elliptic

In a recent preprint (see [C]), F. Calegari has shown that for l = 2, 3, 5 and 7 there exist 2-dimensional irreducible representations ρ of Gal(Q̄/Q) with values in Fl coming from the l-torsion points of an elliptic curve defined over Q, but not minimally, i.e., so that any elliptic curve giving rise to ρ has prime-to-l conductor greater than the (prime-to-l) conductor of ρ. In this brief note, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 1996

ISSN: 1073-2780,1945-001X

DOI: 10.4310/mrl.1996.v3.n3.a4